Goto

Collaborating Authors

 Darmstadt Region


Benchmarking the Attribution Quality of Vision Models Robin Hesse 1 Simone Schaub-Meyer 1,2 Stefan Roth Department of Computer Science, Technical University of Darmstadt

Neural Information Processing Systems

Attribution maps are one of the most established tools to explain the functioning of computer vision models. They assign importance scores to input features, indicating how relevant each feature is for the prediction of a deep neural network. While much research has gone into proposing new attribution methods, their proper evaluation remains a difficult challenge. In this work, we propose a novel evaluation protocol that overcomes two fundamental limitations of the widely used incremental-deletion protocol, i.e., the out-of-domain issue and lacking inter-model comparisons. This allows us to evaluate 23 attribution methods and how different design choices of popular vision backbones affect their attribution quality. We find that intrinsically explainable models outperform standard models and that raw attribution values exhibit a higher attribution quality than what is known from previous work. Further, we show consistent changes in the attribution quality when varying the network design, indicating that some standard design choices promote attribution quality.


Dense Unsupervised Learning for Video Segmentation Nikita Araslanov Simone Schaub-Meyer 1 Stefan Roth Department of Computer Science, TU Darmstadt

Neural Information Processing Systems

We present a novel approach to unsupervised learning for video object segmentation (VOS). Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime. We rely on uniform grid sampling to extract a set of anchors and train our model to disambiguate between them on both inter-and intra-video levels. However, a naive scheme to train such a model results in a degenerate solution. We propose to prevent this with a simple regularisation scheme, accommodating the equivariance property of the segmentation task to similarity transformations. Our training objective admits efficient implementation and exhibits fast training convergence. On established VOS benchmarks, our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.


WikiDBs: A Large-Scale Corpus of Relational Databases from Wikidata Technical University of Darmstadt, Germany

Neural Information Processing Systems

Deep learning on tabular data, and particularly tabular representation learning, has recently gained growing interest. However, representation learning for relational databases with multiple tables is still an underexplored area, which may be attributed to the lack of openly available resources. To support the development of foundation models for tabular data and relational databases, we introduce WikiDBs, a novel open-source corpus of 100,000 relational databases. Each database consists of multiple tables connected by foreign keys. The corpus is based on Wikidata and aims to follow certain characteristics of real-world databases. In this paper, we describe the dataset and our method for creating it. By making our code publicly available, we enable others to create tailored versions of the dataset, for example, by creating databases in different languages. Finally, we conduct a set of initial experiments to showcase how WikiDBs can be used to train for data engineering tasks, such as missing value imputation and column type annotation.



Dense Unsupervised Learning for Video Segmentation Nikita Araslanov Simone Schaub-Meyer 1 Stefan Roth Department of Computer Science, TU Darmstadt

Neural Information Processing Systems

We present a novel approach to unsupervised learning for video object segmentation (VOS). Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime. We rely on uniform grid sampling to extract a set of anchors and train our model to disambiguate between them on both inter-and intra-video levels. However, a naive scheme to train such a model results in a degenerate solution. We propose to prevent this with a simple regularisation scheme, accommodating the equivariance property of the segmentation task to similarity transformations. Our training objective admits efficient implementation and exhibits fast training convergence. On established VOS benchmarks, our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.


9 Appendix/ Supplementary material for the paper: Causal analysis of Covid-19 spread in Germany 9.1 Results of causal analysis on federal level for all four combinations of thresholds for SyPI

Neural Information Processing Systems

Figure 5: Detected causal paths of the spread of Covid-19 among the federal German states, including causes among the restriction measures taken by each federal state. Each colour (in arrows and policies) indicates causes of one state (see top legend). The four subfigures correspond to the four combinations of threshold 1 and 2 that we tested. A distribution P is faithful to a directed acyclic graph (DAG) G if no conditional independence relations other than the ones entailed by the Markov property are present. Let G be a causal graph with vertex set V and P be a probability distribution over the vertices in V generated by the causal structure represented by G. G and P satisfy the Causal Markov Condition if and only if for every W in V, W is independent of V \ (Descendants(W) Parents(W)) given Parents(W).


Optimizing Estimators of Squared Calibration Errors in Classification

arXiv.org Machine Learning

In this work, we propose a mean-squared error-based risk that enables the comparison and optimization of estimators of squared calibration errors in practical settings. Improving the calibration of classifiers is crucial for enhancing the trustworthiness and interpretability of machine learning models, especially in sensitive decision-making scenarios. Although various calibration (error) estimators exist in the current literature, there is a lack of guidance on selecting the appropriate estimator and tuning its hyperparameters. By leveraging the bilinear structure of squared calibration errors, we reformulate calibration estimation as a regression problem with independent and identically distributed (i.i.d.) input pairs. This reformulation allows us to quantify the performance of different estimators even for the most challenging calibration criterion, known as canonical calibration. Our approach advocates for a training-validation-testing pipeline when estimating a calibration error on an evaluation dataset. We demonstrate the effectiveness of our pipeline by optimizing existing calibration estimators and comparing them with novel kernel ridge regression-based estimators on standard image classification tasks.


A systematic review on expert systems for improving energy efficiency in the manufacturing industry

arXiv.org Artificial Intelligence

Against the backdrop of the European Union's commitment to achieve climate neutrality by 2050, efforts to improve energy efficiency are being intensified. The manufacturing industry is a key focal point of these endeavors due to its high final electrical energy demand, while simultaneously facing a growing shortage of skilled workers crucial for meeting established goals. Expert systems (ESs) offer the chance to overcome this challenge by automatically identifying potential energy efficiency improvements and thereby playing a significant role in reducing electricity consumption. This paper systematically reviews state-of-the-art approaches of ESs aimed at improving energy efficiency in industry, with a focus on manufacturing. The literature search yields 1692 results, of which 54 articles published between 1987 and 2023 are analyzed in depth. These publications are classified according to the system boundary, manufacturing type, application perspective, application purpose, ES type, and industry. Furthermore, we examine the structure, implementation, utilization, and development of ESs in this context. Through this analysis, the review reveals research gaps, pointing toward promising topics for future research.


ModeConv: A Novel Convolution for Distinguishing Anomalous and Normal Structural Behavior

arXiv.org Artificial Intelligence

External influences such as traffic and environmental factors induce vibrations in structures, leading to material degradation over time. These vibrations result in cracks due to the material's lack of plasticity compromising structural integrity. Detecting such damage requires the installation of vibration sensors to capture the internal dynamics. However, distinguishing relevant eigenmodes from external noise necessitates the use of Deep Learning models. The detection of changes in eigenmodes can be used to anticipate these shifts in material properties and to discern between normal and anomalous structural behavior. Eigenmodes, representing characteristic vibration patterns, provide insights into structural dynamics and deviations from expected states. Thus, we propose ModeConv to automatically capture and analyze changes in eigenmodes, facilitating effective anomaly detection in structures and material properties. In the conducted experiments, ModeConv demonstrates computational efficiency improvements, resulting in reduced runtime for model calculations. The novel ModeConv neural network layer is tailored for temporal graph neural networks, in which every node represents one sensor. ModeConv employs a singular value decomposition based convolutional filter design for complex numbers and leverages modal transformation in lieu of Fourier or Laplace transformations in spectral graph convolutions. We include a mathematical complexity analysis illustrating the runtime reduction.


Analyzing Chat Protocols of Novice Programmers Solving Introductory Programming Tasks with ChatGPT

arXiv.org Artificial Intelligence

The increasing need for competent computing graduates proficient in programming, software development, and related technical competencies [Ca17] is one of the factors exacerbating pressure on higher education institutions to offer high quality, competency-based education [Ra21]. However, the latter requires extensive resources, mentoring, and, for example, formative feedback for learners, especially in introductory programming classes [Je22; Lo24]. This is due to the fact that novices experience a number of challenges in the process, which have been subject to extensive research in the past decades [Du86; Lu18; SS86]. Among them are cognitively demanding competencies [Ki20; Ki24], such as problem understanding, designing and writing algorithms, debugging, and understanding error messages [Du86; ER16; Ki20; Lu18; SS86]). Educators' expectations towards novice learners and what they can achieve in their first semester(s) seem to be too high and unrealistic [Lu16; Lu18; WCL07]. Moreover, the student-educator ratio in introductory programming classes keeps increasing in German higher education institutions, thereby limiting resources to provide feedback and hints, and adequately address heterogeneous prior knowledge and diverse educational biographies [Pe16; SB22].